Q1. The graph of a function is given. Decide whether it is even, odd, or neither.

a. even   b. odd   c. neither

Q2. Answer the question about the given function.

Given the function f(x) =, if x = -2, what is f(x)? What point is on the graph of f?   a.; (, -2)   b. -; (-2, -)   c. -; (-, -2)   d.; (-2,)

Q3. Determine whether the function is symmetric with respect to the y-axis, symmetric with respect to the x-axis, symmetric with respect to the origin, or none of these.

y = -6×3 + 7x   a. origin only   b. y-axis only   c. x-axis, y-axis, origin   d. x-axis only

Q4. Find the average rate of change for the function between the given values.

f(x) =; from 4 to 7   a. 7   b. –

c. 2   d.

Q5. List the intercepts of the graph.Tell whether the graph is symmetric with respect to the x-axis, y-axis, origin, or none of these.

<b

</b   a. (-1, 0), (0, 0), (1, 0); symmetric to origin, x-axis, and y-axis   b. (-1, 0), (0, 0), (1, 0); symmetric to origin   c. (-1, 0), (0, 0), (1, 0); symmetric to y-axis   d. (-1, 0), (0, 0), (1, 0); symmetric to x-axis

Q6. Find the value for the function.

Find -f(x) when f(x) = 2×2 – 5x + 3.   a. -2×2 + 5x + 3   b. 2×2 + 5x + 3   c. -2×2 + 5x – 3   d. 2×2 + 5x – 3

Q7. Answer the question about the given function.

Given the function f(x) = -3×2 – 6x – 6, is the point (-1, -3) on the graph of f?   a. Yes   b. No

Q8. Based on the graph, find the range of y = f(x).

<b

</b   a. [0, 6]   b. [0, 6)   c. [0,]   d. [0, ∞)

Q9. Determine algebraically whether the function is even, odd, or neither.

f(x) = 2×3   a. even   b. odd   c. neither

Q10. Determine if the type of relation is linear, nonlinear, or none.

a. None   b. Linear   c. Nonlinear

Q11. Answer the question about the given function.

Given the function f(x) = -7×2 + 14x + 4, if x = 1, what is f(x)? What point is on the graph of f?   a. 11; (1, 11)   b. 11; (11, 1)   c. -17; (1, -17)   d. -17; (-17, 1)

Q12. The graph of a piecewise-defined function is given. Write a definition for the function.

<b

</b   a.

b.

c. f(x) =

d.

Q13. Determine algebraically whether the function is even, odd, or neither.

f(x) = -5×2 + 4   a. even   b. odd   c. neither

Q14. The cost C of double-dipped chocolate pretzel O’s varies directly with the number of pounds of pretzels purchased, P. If the cost is \$5442 when 5.0 pounds are purchased, find a linear function that relates the cost C to the number of pounds of pretzels purchased P. Then find the cost C when 6.0 pounds are purchased.

a. C = 0.092P; \$0.55   b. C = 10.884P; \$65.30   c. C =; \$45.35   d. C = 9.07P; \$45.35

Q15. Answer the question about the given function.

Given the function f(x) = x2 + 3x – 40, list the x-intercepts, if any, of the graph of f.

a. (8, 0), (-5, 0)   b. (8, 0), (5, 0)   c. (-8, 0), (5, 0)   d. (-8, 0), (1, 0)

Q16. The graph of a function is given. Determine whether the function is increasing, decreasing, or constant on the given interval.

(-2, -1)

<b

</b   a. decreasing   b. increasing   c. constant

Q17. Answer the question about the given function.

Given the function f(x) = -2×2 + 4x + 3, list the y-intercept, if there is one, of the graph of f.   a. -1   b. 3   c. -3   d. 5

Q18. Given: E=I/R and P=IE with the values: P=10 and E=100 What are the values for I and R?   a. R=.001, I=0.1   b. R=100, I=100   c. R=0.1, I=1000   d. Cannot be solved without the value of another variable.

Q19. Locate any intercepts of the function.

a. (0, 0), (0, 1)   b. (0, 0)   c. (0, 0), (1, 0)   d. none

Q20. Find the domain of the function.

g(x) =

a. {x|x ≠ 0}   b. {x|x > 64}   c. {x|x ≠ -8, 8}   d. all real numbers